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Abstract. Porous-media flow of polymers with Carreau-law viscosities and their application to enhanced oil recov-
ery (EOR) is considered. Applying the homogenization method leads to a nonlinear two-scale problem. In case
of a small difference between the Carreau and the Newtonian case an asymptotic expansion based on the small
deviation of the viscosity from the Newtonian case is introduced. For uni-directional pressure gradients, which is
a reasonable assumption in applications like EOR, auxiliary problems to decouple the micro- from the macrovar-
iables are derived. The microscopic flow field obtained by the proposed approach is compared to the solution
of the two-scale problem. Finite-element calculations for isotropic and anisotropic pore-cell geometries are used
to validate the accuracy and speed-up of the proposed approach. The order of accuracy has been studied by
performing the simulations up to the third-order expansion for the isotropic geometry.
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1. Introduction

Polymer flooding has been found to be an excellent method for improving oil recovery (EOR,
Enhanced Oil Recovery). Polymers are added to the injected water to increase its viscosity and
to improve the oil-water mobility ratio [1, Chapter 1], [2]. For heavy oil with viscosities 103–
106 times higher than water [3], the water-injection technique as described in [4,5] is not appli-
cable and polymer injection is used. To describe polymer flooding in porous media, engineers
use the Darcy filtration law and the porous medium is considered to consist of connected
arrays of capillaries [6, Chapter 3], [7,8]. The permeability is either obtained by measurements
or deduced from known models such as that of Kozeny-Carman [9].

However, Darcy’s law and the permeability can be derived from the microscopic Stokes-
flow equations using homogenization techniques, which are asymptotic expansions in the
small ratio ε of the microscopic and the macroscopic length scale; see [10, Section 1.4], [11]
and references therein. In the Newtonian case, the micro- and macroscale decouple and one
obtains a local relation between the pressure gradient and the flow velocity. The homogeniza-
tion of non-Newtonian flows has been discussed in [12–15]. The resulting filtration laws are
in general non-local, i.e., the micro- and macroscale do not decouple. To remedy this draw-
back in the non-Newtonian case, numerical methods to solve the two-scale homogenized sys-
tem are used [16,17] or nonlinear filtration laws have been derived; see [18], [19, Chapter 1]
and references therein. Non-Newtonian Hele-Shaw flows and their analogies in porous-media
equations are also widely discussed in the literature; see [20–22].

The rheologic behavior of polymeric liquids used in EOR is frequently described in the
engineering literature by either a power law or the Carreau law [6, Chapter 4]. A recent devel-
opment of stochastic homogenization for power-law fluids may be found in [23].
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Since the concentration of the polymers is rather low, the difference between the real rhe-
ologic behavior and the Newtonian case is typically very small. This suggests to introduce a
second asymptotic expansion based on the small deviation of the viscosity from the Newto-
nian case. For uni-directional pressure gradients, which is a reasonable assumption in applica-
tions like EOR, we derive auxiliary problems to decouple the micro- from the macrovariables.

According to the power law (sometimes also called Ostwald-de Waele law), the viscosity is
given by

η=η(γ )=λγ r−2, (1)

where γ = ‖Du‖ =
(∑

i,j (Di,ju)
2
)1/2

denotes the shear rate, the rate-of-strain tensor being

given by Du= 1
2

[∇u+∇u�]
. The parameters λ and r are called the consistency and the flow

index. The flow index r characterizes the fluid: for r >2 the fluid is called dilatant, r=2 cor-
responds to Newtonian behavior, the range 1<r <2 is called pseudo-plastic and r= 1 yields
purely plastic flows. We focus in this paper on the pseudo-plastic regime, i.e., r ∈ (1,2). Due
to its simplicity and ability to fit experimental viscosity data for a large class of fluids, this
model is very popular. However, one disadvantage of the power law is that it does not accu-
rately describe the behavior of the viscosity for low shear rates. According to the power law,
the viscosity tends to infinity for low shear rates and r ∈ (1,2), whereas for real fluids it tends
to some constant value η0 called the zero-shear-rate viscosity. Hence, we consider as a gener-
alization the Carreau law:

η=η(γ )= (η0 −η∞)
(

1+λγ 2
)r/2−1 +η∞,

where η0>η∞>0, λ>0, 1<r <2. The parameter λ is a time constant, r is a dimensionless
constant describing the slope in the power-law region and η∞ is the high-shear-rate limit of
the viscosity.

Scaling the spatial coordinates with a typical length L and the velocities with a typical
velocity U , we obtain the non-dimensional Carreau law of the form

η̃= (η̃0 − η̃∞)
(

1+ λ̃γ̃ 2
)r/2−1 + η̃∞ , (2)

where η̃= η/ηR is the non-dimensional viscosity, ηR some reference value for the viscosity,
λ̃= (U/L)2λ is a dimensionless parameter and γ̃ = (L/U)γ denotes the non-dimensional shear
rate. In the sequel we will always work with this non-dimensional form of the Carreau law
and skip the tilde.

Most of the flows involved in polymer processing are slow. Therefore we consider only
creeping flow, i.e., low-Reynolds-number flows, neglecting inertial effects.

Although we consider throughout this paper only two-dimensional flows, the proposed
method can be generalized to three-dimensional situations. However, the numerical simula-
tions get more involved and require special attention to keep the computational effort within
reasonable limits.

This paper is organized as follows. In Section 2 we review the formal homogenization of
non-Newtonian flows where the viscosity is modeled by a power or Carreau law. Assuming
the porous medium to consist of a periodic arrangement of cells with size ε, we use a two-
scale power-series ansatz for the velocity and the pressure. If the rheologic parameter λ in the
Carreau law is also small, we introduce in Section 3 a second power series with respect to this
parameter. This will lead us to a sequence of cell problems similar to the Newtonian case.



On an asymptotic expansion for Carreau fluids in porous media 353

Figure 1. Sketch of the considered geometry. Note that both the macrovariable x and the microvariable y are
vectors in R

2.

Section 4 presents numerical simulations to illustrate the accuracy of the proposed asymptotic
approach.

Throughout this paper we use boldface italic letters for vectors (e.g. u∈R
2) and boldface

upright letters for matrices (e.g. D∈R
2×2).

2. Non-Newtonian porous-media flow

We consider a porous medium �⊂R
2 with a typical dimension Lx and call x ∈� the macro-

variable. We assume that � consists of a periodic repetition of an elementary square cell Yε
of size Ly = εLx , where ε� 1. This elementary cell contains the fluid part Fε ⊂Yε and the
solid part Sε=�\Fε; see Figure 1.

On the elementary cell we consider the non-dimensional, incompressible Stokes equations
given by

ε2∇ · [ηε Duε]=∇pε in Fε , (3a)

∇ ·uε=0 in Fε , (3b)

uε=0 on ∂Sε . (3c)

Analogously to the Newtonian case [10, Section 1.4], we introduce the microvariable y =
x/ε∈R

2 defined on the upscaled elementary cell Y (with fluid part F and solid part S) and
assume the following two-scale asymptotic expansions for the velocity uε and the pressure pε

uε(x)=uε(x,y)=u0(x,y)+ εu1(x,y)+ ε2u2(x,y)+· · · ,
pε(x)=pε(x,y)=p0(x,y)+ εp1(x,y)+ ε2p2(x,y)+· · · ,

where the coefficient functions ui and pi are y–periodic. We expand the rate-of-strain tensor
Duε as

Duε(x)=Duε(x,y)= ε−1d−1(x,y)+d0(x,y)+ εd1(x,y)+· · · ,
where d−1 =Dyu0 = 1

2

[∇y u0 +∇y u�
0

]
, d0 =Dxu0 +Dyu1 and d1 =Dxu1 +Dyu2.

For a large class of non-Newtonian media, the generalized viscosity ηε is given as a
function of the shear rate γ 2 =‖Duε‖2

2. Expanding the shear rate in terms of ε yields

γ 2 = ε−2γ−2 + ε−1γ−1 +γ0 +· · · ,
where γ−2 =‖d−1‖2

2, γ−1 = 2tr
(
d−1 d0

)
and γ0 =‖d0‖2

2 + 2tr
(
d−1 d1

)
, since all the di are sym-

metric. Now, the viscosity function ηε=η(ε2γ 2) can also be written in terms of ε

ηε=η0 + εη1 + ε2η2 +· · · ,
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where η0 =η(γ−2), η1 =η′(γ−2)γ−1 and η2 =η′(γ−2)γ0 +η′′(γ−2)γ
2
−1/2.

Plugging the above expansions into (3) and collecting equal powers of ε, we have

∇y p0 =0 for y ∈Y . (4)

Hence p0 =p0(x), i.e., the leading order p0 of the pressure is independent of the microvariable
y. The next-order terms lead to the two-scale problem

∇y · [η(γ−2)d−1]=∇x p0 +∇y p1 in �×F , (5a)

∇y ·u0 =0 in �×F , (5b)

u0 =0 on �× ∂S , (5c)

(u0, p1) is y-periodic on �, (5d)

and ∇x ·uε=0 as well as the y-periodicity yield

∇x ·
∫

Y
u0 dy =0 on �. (5e)

In [10, Chapter 3], existence and uniqueness results for problem (5) and Carreau or power-
law viscosities are given. Some of the importance of the two-scale asymptotic expansions
applied to Newtonian flow in porous media arises from the fact that, for Newtonian flu-
ids, the above two-scale problem (5) separates the macro- and microvariable. Hence, one can
derive so-called auxiliary problems that depend solely on the y-variable and that can be used
to define a permeability tensor.

2.1. Derivation of auxiliary problems

In the Newtonian case, Equation (5a) is linear and reads as η�yu0 =∇x p0 +∇y p1. Rewriting
∇x p0 componentwise, we introduce the auxiliary problem

�ywk = ek +∇y πk , (6)

where wk(y) and πk(y) depend solely on the microvariable. The solution u0(x,y) and p1(x,y)

of (5) is then given by

u0(x,y)= 1
η

∑
k

∂kp0(x) ·wk(y) ,

p1(x,y)=
∑
k

∂kp0(x) ·πk(y) .

Averaging over the microvariable y, we obtain Darcy’s law

u0(x)=
∫

Y
u0(x,y)dy = 1

η

∑
k

∂kp0(x)

∫

Y
wk(y)dy =:

M
η

·∇p0 ,

where M is the permeability tensor.
To generalize this approach to the non-Newtonian case and to find conditions for the

existence of decoupled auxiliary problems, we propose the ansatz

u0(x,y)=
∑
k

f (∂kp0) ·wk(y) , (7a)

p1(x,y)=
∑
k

g(∂kp0) ·πk(y) , (7b)



On an asymptotic expansion for Carreau fluids in porous media 355

where f and g are some yet arbitrary functions. Plugging this ansatz for u0 into the shear
rate, we obtain

γ−2(x,y)=
∑
k

f (∂kp0)
2‖Dwk‖2

2 +
∑
k 	=l

f (∂kp0)f (∂lp0)tr (Dwk Dwl +Dwl Dwk) . (8)

and hence the two-scale problem (5a) reads as
∑
k

f (∂kp0)∇y · [(η0(x,y)Dwk(y)]=
∑
k

∂kp0(x) · ek +
∑
k

g(∂kp0) ·∇yπk(y) . (9)

If the viscosity function separates like η0(x,y)=ϕ(x)ψ(y), we can derive an auxiliary prob-
lem similar to (6) depending solely on the microvariable y.

Let us restrict ourselves to the case of a uni-directional gradient of the macroscopic pres-
sure, i.e., ∂kp0 = 0 for all but one k. This assumption is quite realistic in applications like
EOR, since the microscopic flow is driven mainly by the pressure difference between the injec-
tion point and the well. In this flow regime, the expression for the shear rate (8) simplifies to

γ−2(x,y)=f (∂kp0(x))
2‖Dwk(y)‖2

2 = f̃ (x) γ̃ (y) . (10)

To obtain an auxiliary problem, it is required that

η(γ−2)=η
(
f̃ (x) γ̃ (y)

)
=ϕ(x)ψ(y) . (11)

Considering ∂y (∂x(11)/(11)) and introducing z= f̃ (x) γ̃ (y), we obtain the differential equa-
tion

ηη′′ −η′2

η2
z+ η′

η
=0 
⇒ (log η)′′ z+ (log η)′ =0

for η=η(z) with the general solution

η(z)= c1z
n .

Hence, in the case of a uni-directional macroscopic pressure gradient we can expect auxiliary
problems only for Newtonian (n=0) or power-law fluids (n 	=0).

2.2. Power-law fluids

For a power-law fluid, the viscosity is given by (1). Using (10) we obtain η0 =
λf (∂kp0(x))

r−2 ‖Dwk(y)‖r−2
2 for the leading term of the viscosity. The two-scale problem (5a)

reads

λf (∂kp0)
r−1 ∇y ·

(
‖Dwk(y)‖r−1

2 Dwk(y)
)

= ∂kp0(x) · ek +g(∂kp0) ·∇y πk(y) .

Setting f (∂kp0) = (∂kp0)
1/(r−1) and g(∂kp0) = ∂kp0 yields the following auxiliary problem,

independent of the macrovariable x,

∇y ·
(
‖Dwk(y)‖r−1

2 Dwk(y)
)

= ek +∇y πk(y) for y ∈F . (12)

Once having the solution wk(y), we can compute the zeroth-order approximation of the
velocity field

u0(x,y)= (∂kp0(x))
1/(r−1) wk(y) (13)
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and averaging over the microvariable y yields the macroscopic seepage velocity

ũ(x)= (∂kp0(x))
1/(r−1)

∫

Y
wk(y)dy . (14)

Note, that this derivation is only valid in the case of a uni-directional pressure gradient.
Unlike in the Newtonian case, it is not possible to construct the velocity field for arbitrary
pressure gradients via superposition.

2.3. Carreau fluids

Using the Carreau model (2) for the viscosity we cannot construct an auxiliary problem, not
even in the case of a uni-directional macroscopic pressure gradient. If ∂kp0 = a = const., we
can plug (13) into (5a) and obtain the auxiliary problem

∇y ·
[
η

(
‖Dwk(y)‖2

2

)
Dwk(y)

]
=a +∇y πk(y) for y ∈F , (15)

with

η
(
‖Dwk(y)‖2

2

)
= (η0 −η∞)

(
ξ1 +λ‖Dwk(y)‖2

2

)(r/2−1)+ ξ2 , (16)

and ξ1 = (∂kp0(x))
1/(r−1), ξ2 = η∞(∂kp0(x))

−(r−2)/(r−1). Note, that the auxiliary problem (15)
is independent of the macroscale. The microscopic velocity wk(y)=wk(a;y) depends on the
pressure gradient a, and averaging over the cell, we obtain the macroscopic velocity

ũ=
∫

Y
wk(a;y)dy = ũ(a) . (17)

This equation, relating the macroscopic pressure gradient a to the seepage velocity u, can
be viewed as a nonlinear filtration law, extending Darcy’s law from the Newtonian to the
non-Newtonian regime.

However, we will not pursue this approach, but rather focus on the rheology parame-
ter λ in the Carreau law. An expansion with respect to this parameter will enable us to
derive a sequence of Newtonian two-scale problems for approximating (5). For each of these
Newtonian problems we have the auxiliary problem available that separates the macro- and
microscale.

3. Asymptotic expansion of the Carreau model

In this section we consider the two-scale problem (5) with a viscosity given by the Carreau
law (2). In the case of a small rheology parameter λ� 1, we introduce a second power
series for the velocity and pressure with respect to λ. For the sake of simplicity we are sat-
isfied with an expansion up to first-order terms. To obtain the higher-order corrections is a
straightforward but tedious algebraic exercise.

The viscosity introducing the nonlinearity in (5a) is given by

η(γ−2)= (η0 −η∞)
(

1+λ‖d−1‖2
2

)(r/2−1)+η∞ .

Expanding with respect to λ up to first order, we obtain

η≈η(0)+λη(1)=η0 +λ(η0 −η∞)
( r

2
−1

)
‖d−1‖2

2 . (18)
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Note, that this power series in λ is an expansion at zero shear rates. This type of expansion is
reasonable in EOR, since the viscosity of the polymer-water mixture is only slightly different
from the Newtonian viscosity of the water.

Assuming the existence of a power series in λ for p0(x) and the two-scale pressure
p1(x,y), we introduce the following ansatz for the velocity

u0(x,y)=u
(0)
0 (x,y)+λu(1)0 (x,y)=w

(0)
k (y) g(∂kp0)

(0)+λw(1)
k (y) g(∂kp0)

(1)+· · · . (19)

with g(∂kp0)
(0)= ∂kp0 and g(∂kp0)

(1)=|∂kp0|2∂kp0.
The auxiliary problem at O(λ0) reads as

η0�yw
(0)
k (y)=∇y π

(0)
k (y)− ek for y ∈F ,

∇y ·w(0)
k (y)=0 for y ∈F ,

w
(0)
k (y)=0 for y ∈ ∂S ,

(
w
(0)
k , π

(0)
k

)
is periodic in y .

(20)

In the next order O(λ1) the auxiliary problem is given by

η0�yw
(1)
k (y)=∇y π

(1)
k (y)− ek +f (w

(0)
k ) for y ∈F ,

∇y ·w(1)
k (y)=0 for y ∈F ,

w
(1)
k (y)=0 for y ∈ ∂S ,

(
w
(1)
k , π

(1)
k

)
is periodic in y ,

(21)

where

f (w
(0)
k )=−(η0 −η∞)

( r
2

−1
)

∇y

(
‖Dw

(0)
k (y)‖2 Dw

(0)
k (y)

)
. (22)

Generally we have to solve for each order O(λj ) a Newtonian auxiliary problem of the
form

η0�ywk(y)=∇y πk +f in F ,
∇y ·wk(y)=0 in F ,
wk(y)=0 on ∂S ,
(wk, πk) is periodic in y .

(23)

Note that, once having the solution (w
(j)
k , π

(j)
k ) available, we can advance to the next order

j +1 and get successively the contributions to compute the velocity u0 according to (19).

4. Simulations

In this section we show some numerical simulations to illustrate the accuracy and speed-up
of the asymptotic approach presented in Section 3. We consider a range of parameters that is
typical for polymers used in EOR and show two example geometries for the elementary cell
representing a simplified “standard” geometry in homogenization theory, as well as a more
realistic geometry.



358 T. Götz and H.A. Parhusip

Figure 2. (left): Mesh for the isotropic cell using 580 triangles (denoted as coarse).
(right): Mesh for the anisotropic cell using 3672 triangles (denoted as coarse).

Table 1. Parameters of the triangulations used for the isotropic and anisotropic cell geometry.

Isotropic cell Anisotropic cell

coarse medium fine coarse medium fine

NT 580 764 1360 3672 9181 22212
NN 326 424 742 2194 5165 12209

4.1. Geometry and parameters

We consider two different problems, an isotropic and an anisotropic porous medium. In the
case of the isotropic medium, the cell Y is defined as a unit square [0,1]2 with a centered cir-
cular inclusion of radius R= 0·15, see Figure 2(left). For the anisotropic problem we consider
the geometry as shown in Figure 2(right) serving as a quite realistic example for natural porous
media [24, Chapter 5]. The number of triangles (NT ) and nodes (NN ) used in the meshes for
the isotropic and anisotropic geometry are listed in Table 1.

The parameters used in the simulations are based on the data collected by Hilfer; see [25].
Thus:
– typical pore sizes in oil reservoirs are Ly ≈10−4 m;
– microscopic fluid velocities for reservoir flooding are U ≈3×10−6 m s−1;
– the distance between the injection and production well is about Lx ≈100 m.
Hence, the ratio between the microscopic and macroscopic reference length is given by
ε=Ly/Lx =10−6. This small ratio ε serves as the expansion parameter in the homogeniza-
tion. Concerning the macroscopic pressure p0, we assume a nonzero pressure gradient in the
horizontal e1 direction and a zero pressure gradient in the vertical e2 direction.

For the rheologic properties of the polymer we refer to the measurements for polymers in
capillary pipes given in [26], that is,
– density ρ=1000 kg m−3;
– parameters in the Carreau model: η∞ =0·001 Pa s, η0 =0·01 Pa s, r=1·3, λ=0·01 s2.
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These data yield a Reynolds number Re=(
ρULy

)
/η0 =3×10−5 and a dimensionless rheology

parameter λ̃=λU2/L2
y =9×10−6. Since λ̃�1, we can use the asymptotic expansion proposed

in Section 3.
As already mentioned in the Introduction, for most polymer solutions and polymer melts,

the value of r in the Carreau law varies between 1 and 2; see also [6, Chapter 4]. Therefore
we consider in our numerical simulations r= 1·3, 1·5, 1·7 and 1·9. All the numerical simula-
tions are carried out for the dimensionless equations.

4.2. Solution method

The solution of the nonlinear two-scale problem (5) is considered to be exact. To solve this
problem we use a Lagrangian method. Here, the idea is to view the incompressibility con-
dition ∇y ·u0 =0 as a constraint with the pressure p1 as Lagrangian multiplier. The resulting
saddle point problem is discretized by finite elements using quadratic Lagrangian elements for
the velocity and linear Lagrangian elements for the pressure. A detailed description of this
method applied to nonlinear Stokes problems can be found in [16], [27 Chapter 2], [28, Sec-
tion 7.5], [29].

In our numerical simulations based on the asymptotic expansion, we first solve the Prob-
lems (20) and (21) which are linear Stokes problems and use Equation (19) to obtain the
velocity field.

The general outline of the numerical simulation can be summarized in the following steps:
1. Given ∂kp(x), solve Problem (20);
2. Using this solution, compute f by (22) and solve Problem (21);
3. Equation (19) yields the velocity field u0(x,y);
4. Use the solution of (20) as an initial guess to solve the nonlinear Problem (5).

Solving the nonlinear two-scale Stokes problem is rather expensive; hence the asymp-
totic procedure proposed above might provide a possible speed-up. In Table 2 the speed-up
factors of the asymptotic expansion method are listed. Note, that we normalize the execution
time of the nonlinear two-scale problem to 1 and that both methods are implemented using
FEMLAB� 2.3.

The asymptotic expansion is found to provide a speed-up factor between 1·5 and 2 for the
isotropic case and between 1·5 and 3·5 for the anisotropic geometry. One explanation for the
rather fast convergence of the nonlinear direct solution might be the fact that the zeroth-order
of the asymptotic expansion is used as an initial guess for the nonlinear solver. Hence the
direct solution requires only a few iterations, especially in the case of r large, since in this
case the viscosity is close to Newtonian.

4.3. Numerical results

4.3.1. First-order approximation
We have computed the velocity field inside the isotropic cell using either the full nonlinear
Stokes problem (5) (here referred to as “Exact”) and the zeroth-order solution according to
Problem (20) (“Newtonian”) and including the first-order correction (21) (“Asymptotic”). The
simulations are carried out for the parameter r ranging between 1·3 and 1·9 which covers the
region relevant for most polymers.

In order to illustrate the accuracy, we show in Figure 3(left) the relative error between the
“exact” solution u and the solution using the asymptotic expansion ũ. The relative error is
given by
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Table 2. Speed-up factors of the asymptotic expansion compared to the direct solution of the nonlinear
two-scale Stokes problem. The execution time of the nonlinear two-scale problem is scaled to 1. In real-
ity it is of the order of 1 minute on the fine mesh of the isotropic cell with r = 1·3 up to 193 minutes
on the fine mesh of the anisotropic cell with r= 1·3 (1·8 GHz Athlon, 1·5 GB Memory, FEMLAB 2.3).
Missing results (‘—’) indicate, that the direct solution method did not converge

Isotropic cell Anisotropic cell

r coarse medium fine coarse medium fine

1·3 1·95 1·58 1·51 – – 1·58
1·5 1·52 1·70 1·51 – 1·53 2·30
1·7 1·50 1·35 1·36 3·54 1·52 1·53
1·9 1·52 1·69 1·95 2·88 1·73 3·79

ER(y)= ‖u(y)− ũ(y)‖2

max
y∈Y

‖u(y)‖2
. (24)

From a practical point of view, using an absolute norm, e.g. the error in the flow rate, as sug-
gested by one of the referees, might be more appealing, since it directly shows the implications
of the used asymptotics to the predicted productivity of the oil reservoir. However, since we
are mainly interested in the applicability of the proposed ansatz, we focus on a relative norm
based on the primary variables of the problem. In addition to the relative error in the veloc-
ity field, Figure 5 provides a comparison of the shear-rates and viscosities in the exact and
the asymptotic solutions.

In the case of isotropic media, the maximum of the relative error is about 4·5% and
appears on the horizontal cell boundaries, whereas the relative error is smallest close to the
surface of the obstacle.

Figure 3(right) shows the horizontal velocity component along the line y1 =0·7, y2 ∈ [0,1]
for r=1·3. Again, the same behavior as in Figure 3(left) is clearly visible; the error is smallest
close to the obstacle (here for y2 ≈ 0·5) and increases toward the boundaries. A close agree-
ment between the “exact” solution and the asymptotic expansion is found. The solution
involving a Newtonian viscosity differs already quite significantly from the “exact” one, indi-
cating the need for the correction terms introduced by the asymptotic expansion.

Analogously to the isotropic case, we consider the complex geometry shown in Figure 2
(right). Again, the simulations are carried out for the parameter r ranging between 1·3 and
1·9 and we compare the “exact” and the asymptotic solution. Due to the complexity of the
geometry, the maximal relative errors are larger in the anisotropic case and reach about 10%
on the finest triangulation.

In Figure 4(left) the relative error for r = 1·5 is shown and Figure 4(right) provides a
comparison of the velocity profiles analogously to the isotropic geometry.

In Table 3 we list the relative errors for the isotropic and the anisotropic cell for the
different triangulations and various values of the parameter r.

For the isotropic geometry the relative errors are independent of the used triangulation,
whereas in the anisotropic case the errors depend on the grid. The direct solution of the two-
scale problem did only converge on the finest triangulation for the anisotropic geometry case
and r=1·3. For r=1·5 the direct solution converged already on the medium grid. Due to the
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Figure 3. (left): Relative error ER(y) between “exact” solution and asymptotic expansion. The arrows visualize
u(y)− ũ(y) and the greyscale shows the magnitude of the relative error. Computed on the fine grid. (right): Veloc-
ity profile for r=1·3 along the line y1 =0·7, y2 ∈ [0,1]. Note that the asymptotic solution(‘- -’) agrees very well the
“exact” solution (‘. . . ’).

Figure 4. (left): Relative error ER(y) between “exact” solution and asymptotic expansion. The arrows visualize
u(y)− ũ(y) and the greyscale shows the magnitude of the relative error. Computed for r=1·5 on the medium grid.
(right): Velocity profile for r = 1·3 along the line y1 = 0·7, y2 ∈ [0,1] computed on the medium grid. Note, that the
asymptotic solution (‘–’) agrees perfectly with the exact one (‘. . . ’).

Table 3. Maximal relative errors for the two cell geometries, refined triangulations and various values of
r. Missing results (‘—’) indicate, that the direct solution method did not converge.

Isotropic cell Anisotropic cell

r coarse medium fine coarse medium fine

1·3 4·42% 4·44% 4·41% — — 8·50%
1·5 2·46% 2·41% 2·36% — 15·93% 9·96%
1·7 2·28% 2·32% 2·21% 11·66% 9·89% 8·32%
1·9 0·98% 1·01% 0·95% 6·08% 3·99% 3·96%

the nonlinearity in viscosity, small spatial stepsizes are needed in these cases. However, the
asymptotic expansion converged on all grids, since it only requires the solution of a linear
Stokes equation.
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Figure 5. (left): Two scale shear-rate profile for isotropic case computed along the line y1 = 0·7, y2 ∈ [0,1] for the
isotropic case computed using the zeroth-order cell problem to get ‖D(wk(y))‖2

2 and multiplied by the (∂kp0)
2 for

the asymptotic profile. (right): Viscosity profile for isotropic case along the line y1 =0·7, y2 ∈ [0,1] computed on the
medium grid.

As expected, the errors are largest in the non-Newtonian regime, i.e., for r = 1·3 and
decrease towards the Newtonian regime, i.e., for r increasing for both geometries.

In Figure 5, the shear rates and the resulting nondimensional viscosities are shown the
“exact” and the asymptotic solution. For a given dimensionless λ= 9 × 10−6 and r = 1·3 we
solve the two-scale and the asymptotic problem on the isotropic geometry. Using (19), the
magnitude of the shear rate is given by ‖D(u0)‖2

2 = (∂kp0)
2‖D(wk(y))‖2

2. It is clearly visible
from Figure 5(left), that the shear-rates are large but still λ‖D(u0)‖2

2 holds. Figure 5(right)
shows the computed viscosities; the viscosity determined by the asymptotic expansion agrees
remarkably well with the “exact” viscosity.

4.3.2. Higher-order approximations
We have seen in the previous section that the relative errors in the isotropic case are indepen-
dent of the grids. Hence the relative errors depend solely on the asymptotic expansion with
respect to the parameter λ. To analyze the accuracy of the asymptotic method we consider
the expansion up to the third order for the isotropic case on the coarse grid. We choose r=
1·3 because in this regime the nonlinearity is dominant and we vary the values of λ between
9×10−9 and 9×10−6.

Figure 6 shows a log-log-plot of the maximum relative error versus the scaled expansion
parameter λ. We observe two different regions, where the errors show different behaviors.
Note, that the behaviors of errors change around λ=5·4 ×10−7, which is found numerically.
Hence we choose λ=5·4 ×10−7 as a critical value which divides the errors into two regions.
The first region covers the parameters 9 × 10−9 ≤ λ < 5·4 × 10−7 and the second region is
5·4×10−7 ≤λ<9×10−6.

Figure 7 focuses on these two regions. A least-squares method was used to fit a linear
function to the data. The slope of this linear fit yields the order of the error. Table 4 lists
the obtained orders of the error in the different regions.

In the first region shown in Figure 7 (left), the order of the error is almost equal to 1,
independent of the approximation order. Although λ is rather small in this region, the change
of the approximation seems not to be caused by a loss of significant figures in the computa-
tions. In the second region, see Figure 7 (right) the error behaves almost as expected. For the
first-order approximation the error depends nearly linearly on the expansion parameter λ and
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Figure 6. Correlation between the logarithm of λ/9·0×10−9 and the logarithm of the maximum relative error. The
vertical dashed line separates the two regions of different error behavior.
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Figure 7. (left): Correlation between the logarithm of λ/9·0×10−9 and the logarithm of the maximum relative error
for the region 9·0×10−9 ≤λ<5·40×10−7. The solid line is the linear fit for the first-order approximation, the dash-
dotted line for the second-order and the dashed line for the third-order approximation. (right): Same results as in
the left figure for region II 5·40×10−7 ≤λ<9·0×10−6.

for the second-order expansion it increases quadratically with λ. The deviation for the third-
order expansion may be caused by the numerical method.

At the moment we do not have a conclusive explanation for the existence of the two regions
with different error behavior. Further investigations into this topic seem to be necessary.

5. Conclusions

Polymer flooding has been found to be an excellent method for improving the output of oil
fields, so-called enhanced oil recovery (EOR). Due to the nonlinear rheologic behavior of the
added polymers, the flow of these polymers in porous media cannot be modelled using the
classical Darcy law. Applying a two-scale expansion to the porous-media equations yields in
this situation a coupled two-scale nonlinear system for the velocities and pressures on both
the micro- and macroscale. The direct numerical simulation of this system is a non-trivial
task, since the coupling of the micro- and macroscale generates a problem in depending on a
4- resp. 6-dimensional space variable in 2d resp. 3d physical space. Hence methods to decou-
ple the micro- from the macroscale are desirable and promise a significant speed-up.
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Table 4. Computed orders of the approximation error in the two regions.

Approximation order

Region 1 2 3

I 0·99 0·92 0·90
II 0·84 2·02 2·56

The viscosity of the polymer-water solution is modelled using a Carreau-law, where the
rheologic parameter λ is typically rather small. Exploiting the smallness of this parameter
gives rise to a second asymptotic expansion. In the case of uni-directional pressure gradients
we derived auxiliary problems decoupling the micro- and macrovariables. This approach yields
a sequence of linear Stokes problems on the micro-scale. Based on the finite-element method,
calculations were performed to validate the proposed approach and to compare with the solu-
tion of the nonlinear two-scale problem. For different pore geometries and various rheologi-
cal parameters we found a remarkably good agreement between the asymptotic and the direct
solution.

The relative errors introduced by the first-order asymptotic expansion are less than 5% for
the isotropic and less than 10% for the anisotropic geometry on a suitable finite-element dis-
cretization. The speed-up factor of the asymptotic expansion was found to vary between 1·5
and 3·5 depending on the used grid, geometry and data. Higher-order expansions were studied
in the isotropic case for various values of λ with r=1·3.
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